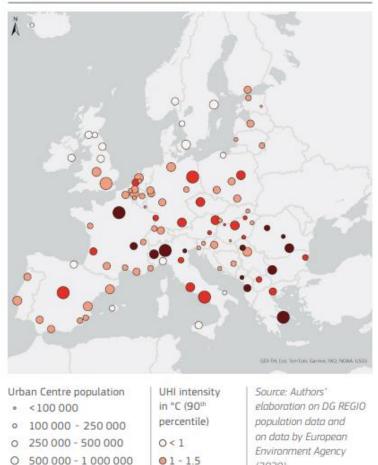
Sensors for Urban Heat Islands monitoring

Marta Perucchini, Bosch (BST), 22/09/2025



Urban Heat Islands (UHI)

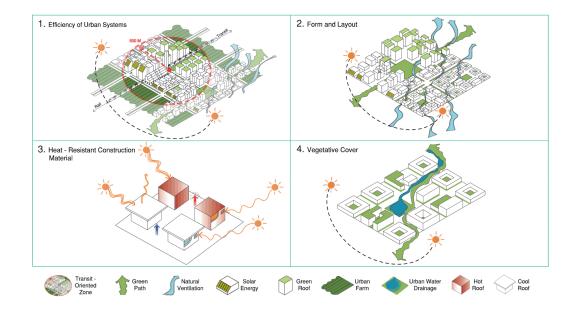
The **urban heat island** effect causes cities to be 0.5-4°C warmer during the day and up to 3°C warmer at night compared to surrounding rural areas.

Figure 1 - Urban Heat Island intensity per city

1 000 000 - 2 500 000

01-15 1.5 - 2

.>2


(2020)

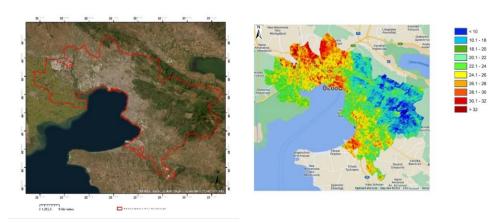
0 300 600km

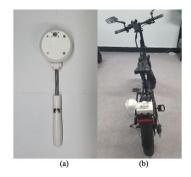
Mitigation strategies

- 1. Integrate green infrastructure into streets.
- 2. Retrofit buildings with insulation and reflective materials.
- 3. Increase trees and drought-resistant plants.
- 4. Promote green walls and roofs for cooling.
- 5. Add water features for cooling.

How is UHI effect measured?

Satellite data




Image of Thessaloniki and the derived LST images in GEE in 2021 (Stamou, A. et al., 2024)

Meteorological stations

Portable devices

Wearable system developed for monitoring outdoor environments (Cureau, R. et al., 2022)

Mobile Urban Heat Monitoring (MUHM) system for pedestrians and motorbikes (Yonghun, C. et al., 2024)

What could wearable sensors do for UHI?

- Measure and identify thermal hotspots at fine granularities enabling local policy interventions
- Real-time measure of the effectiveness of various strategies.
- Enable citizen participation (via gamification)
- Create a diffuse network than can be integrated with sensors applied on coatings/buildings

BME280

Humidity sensor measuring relative humidity, barometric pressure and ambient temperature

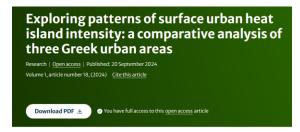

Call for contribution: join us in making cities cooler!

- Goal: Provide municipalities with actionable insights to develop urban plans that reduce UHI effects by leveraging wearable sensors
- Target Audience: Municipal administrations and urban planners
- Requirement: Utilize advanced wearable sensor technology to collect real-time data on temperature, humidity, and other environmental factors. Analyze collected data to understand UHI patterns and identify hotspots.
- **Type of Proposal:** Wide range of innovative contributions, including but <u>not limited to</u>:
 - Technical Solutions (i.e. strategies for deploying networks of sensors effectively, recommendations on optimal sensor placement for accurate mapping of UHI)
 - Community Engagement (i.e. development of applications to involve citizens in data collection and awareness)
 - Integration Ideas (i.e. incorporating sensors into existing urban infrastructure, such as e-bikes or public transport)
 - Data Analysis Tools (i.e. proposals for software or algorithms to analyze and visualize UHI data)

Bibliography

HardwareX

Volume 20, December 2024, e00598


Yonghun Cho[®], Sanghyun Kim[®] A, , Jeongseop Lee[®], Dongwon Ko[®], Hoesung Lee[®],
Yunju Baak[®], Myungho Lee[®]

Show more

+ Add to Mendeley a[®] Share 95 Cite

https://doi.org/10.1016/j.ohx.2024.e00598 > Get rights and content > Under a Creative Commons license > P

Aikaterini Stamou ☑, Eleni Karachaliou, Anna Dosiou, Ioannis Tavantzis & Efstratios Stylianidis

Remote Sensing Applications: Society and Environment

Volume 38, April 2025, 101567

Investigation of the Surface Urban Heat Island (SUHI) by two remote sensing-based approaches in Italian regional capitals

Sustainable Cities and Society

Volume 77, February 2022, 103564

Urban heat island mitigation by green infrastructure in European Functional Urban Areas

